
Developer Console

- Background Research

- Goals of Sly

- Keyboard to Screen

o Input

▪ Console Game Object

▪ Storage

o Parse

▪ Description

▪ Variable Types

o Render

▪ Description

▪ Console Logger

- Command System:

o Broker

o Built-in Commands

o User-built Commands

▪ One liner

▪ One liner with arguments

▪ Qualifier

▪ Qualifier with arguments

- Timeline

- Week by Week Timeline

Background Research

Elevator: As part of the Sly Engine I am looking to implement a Developer Console that will give

gameplay programmers the ability to run commands in real-time.

Inspiration: Primarily I have drawn inspiration from the Source Engine while exploring additional

features and implementations of Nexuiz, GoldSrc (original source engine), and the grandfather Quake

Console.

Goals of Sly Console

There are two features that I would like the console to have:

- Built-in Commands: The console will provide a handful of commands that the user can run.

These commands are meant to control engine level features in real-time. See examples of

functions here.

- User Commands: The system will provide a method in which the user can pass commands to the

console. These commands are meant to tweak gameplay specific features in real-time.

Keyboard to Screen

Input:

- Console Game Object: We need the console to read keyboard input

every frame so that the user can type in commands. One way that I

can implement this is to create a listener object that will scan the

keyboard every frame. An alternative to creating a separate listener

would be to have an engine managed game object. Said game object

would have all of the keyboard keys (that we have fonts for)

registered.

Between these two options, I have chosen the latter implementation

to focus my efforts on other components of the console. The

keyboard input for the console is handled by a console game object

that the console manages.

- Storage: As keys are pressed down and sent to the game object, the game object needs to

handle the input. The goal here is to eventually have the text the user types in parsed by the

console. Thus, each key the user types in is passed to the console to be stored in a buffer. This

buffer can be as simple as a string or as complex as a homebrewed list of exactly 80 characters

to prevent overflow. For simplicities sake, I chose appending each letter the user types into a

string. When the user presses the backspace key, we want to pop letters off of the back of this

string and when they press enter, we want the string to be parsed.

https://developer.valvesoftware.com/w/images/c/c8/Console.gif
https://www.mobygames.com/images/shots/l/112557-nexuiz-windows-screenshot-an-in-game-console-no-fps-can-do.jpg
https://stevehalliwell.com/wp-content/uploads/2017/02/halflife1console.jpg
https://res.cloudinary.com/practicaldev/image/fetch/s--gIx7NN0V--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/steamuserimages-a.akamaihd.net/ugc/596992393158083827/1D1484D35B55F322DA91E4DC02EAC3C39759F884/
https://res.cloudinary.com/practicaldev/image/fetch/s--gIx7NN0V--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/steamuserimages-a.akamaihd.net/ugc/596992393158083827/1D1484D35B55F322DA91E4DC02EAC3C39759F884/

Parse:

- Description: The text that the user types in is sent to the console through the game object

listener to a string. This string is sent through the parser which identifies the first argument of

the string. If the argument matches the name of a function/variable stored in the system, it will

begin function execution or variable printing.

- Variable Types: The user may enter either a function or a variable into the console. When

parsing the input, we break down the types into either functions or variables. See below for a

rough overview of the parsing types and image “SendingCommands.png” located in this file’s

directory for more info on these types.

Render:

- Description: One all of the text has been parsed and a function/variable has been requested, the

final step is to show any messages that need to be communicated to the user. The logger will

always echo back the command the user typed in so that the user knows what was typed in and

any additional text is displayed below the echo message. The question is, how do we display

this text?

- Console Logger: We need a way to be able to display text on the

screen. We could use an existing system to implement this

called the ScreenLog tool, however this tool does not behave

like a normal text console. Instead, we will use the ScreenLog

tool as a base for a new Console Logging system. This console

logging system utilizes sprite fonts to display text on screen. The

user may request text to be displayed in this system through

commands similar to “ConsoleLogger::print(“x”). The console

logger will be a singleton to avoid duplication of loggers and it

will contain two separate buffers:

o Command Buffer: The console buffer is essentially a

screen log panel in itself. Messages are batch inputted

to the console one at a time with each successive

command being placed underneath the previous one.

The command buffer will utilize a vector to store the

commands (however, as I plan to have a fixed amount

of messages, an array may be more appropriate). The

buffer will be wiped each frame to allow for new

messages to flow in. The user will be able to add text to the command buffer through

the ConsoleManager. By passing a string/char array to the ConsoleManager, the data

will be passed to the current console (likely the default one). This data is added to the

command buffer and is repeatedly rendered until it is popped off the buffer for space.

Since the buffer has a fixed size of messages, any time a new message is added that

exceeds capacity, the oldest message is popped off (pop_back).

o Input Buffer: The input buffer is to be treated a bit differently from the command

buffer. Instead of having each successive message added in one after another, we only

ever have one message on screen. In fact, this is less of a buffer and more of a single

string that is edited and displayed in the same location on screen. The text for the

input buffer is anchored to a specific location (likely underneath the maximum reach of

the command buffer). As the Input buffer is being treated a bit differently, we do have

to have separate pass through information to differ from the command buffer.

Command buffer information is stored within the Console object and is not displayed

up until it is parsed. Whereas, the input buffer is updated every time a registered key

is hit. The pass through method is similar to the Command Buffer with the extra step

of the data getting sent to a CommandLogger instead of just the internal console.

- Logging coloration: In addition to generic print commands in a single font, I would like the ability

to print in multiple colors to indicate whether a message is an error message, a warning

message, or a general message (red, yellow, and white).

o Implementation: Instead of adjusting the sprite itself, I figured I could instead load in

different fonts for each type of color I was looking to use. In the ScreenLogger we

already created a sprite font (with associated font) for each message we want to print to

screen. Instead of using the same font for each instance of a message, why not swap

the fonts based a message type?

o Message Types: We must now add a bit more sophistication to the logging system as we

are no longer simply dealing with plain text. My goal is to first implement the console

logging system without any coloration and to eventually work in the idea of message

types. When implementing message types, I will need to add a new data structure that

contains not only a string but also an enumeration of {ERROR, WARNING, DEFAULT} to

ensure that the correct font is used. The end user will not need to know the internal

functionality of the message typing though, there will be three new functions in the

ConsoleManager named Print(…), PrintError(…), PrintWarning(…).

Command System

- Broker: I will need to create a new broker to specifically deal with console

commands. The broker will manage a list of commands to execute at the top

of the frame (Sly::Update). The interesting component of this is previously

for our brokers we would instantly discard any commands after execution.

In this instance however, I am choosing to not throw the commands away as

the user may want to repeatedly execute the same command multiple times.

The commands are not owned by the broker, they are owned by the

console.

- Manager: The console manager is in charge of delegating access from

the user to the current console loaded into the system. It handles built-

in derived command overloading as well as the ability to add commands

to the current console. It also functions as a pass through to the

console logger to print text within console.

The console manager is a singleton as there should only be one

manager no matter how many consoles are created. The console

manager allows the user to setup a new console with the

SetCurrentConsole command. This is useful if the user wants to disable

built-in functions within a release context and to limit the amount of

available commands to the player. The manager is also in charge of

communicating with Sly who calls for the execution of commands.

Once this call is made, the console manager asks the command broker

to execute all existing commands within its list.

- Built-in Automatic: These types of commands are the closest to my previous discussion of

internal commands I would like to have. These commands control engine level features and

have internal calls to locations such as the asset managers, time manager, scene manager, etc.

These commands are fairly simple to implement. They will need to be created at construction

of the console. I’m utilizing my prototypes existing parser system to recognize the name of

passed commands. Thus, if the user wants to run the PingCommand() (which sends an alive

message to the console log), they can simply type in “ping” into the console. The ping text is

sent through the parser and is matched against items of type function. If there’s a match, the

associated command is sent to the broker for execution as the top of the frame. Each of these

commands should have a factory. They must have a factory each as internal commands may

not share the same internal data.

- User Built Commands: These commands fall into four categories. “One liners,” “One liners with

arguments,” “Commands with qualifiers” and “Qualifier with arguments.” Examples of all of

these types are found in “SendingCommands.png” (located in this directory, diagram too large

to include).

o One liner: One liners are used when a command requires no associated object or

parameters to be called. This can be used to reference stored console variables such as

health and enemies, however it can also be used to reference materials within context.

For example, a command in which the user types in “Win” or “Lose” would be able to

call the scene manger’s current scene to notify it of a win condition. The command itself

does not need to know what the current scene is to run.

o One line with parameters: A one line that allows parameters is a bit different in terms of

setup from its base counterpart. The difference being that the command must have an

initializer method. This method is used to pass command line arguments back to the

user-built command upon parsing the input.

o Qualifier: Commands with qualifiers operate similarly to one liners with one subtle

difference. One liners should have only one command associated with them. For

example, if the user wanted to draw a line they would need a command DrawLine. This

command’s only purpose is to draw lines and it cannot draw other objects such as

boxes. One approach to this is having a one liner command titled “draw” which has a

switch on all possible arguments the user could pass in (terrible), another way is through

qualifiers. Qualifiers associate a context with a command. While the input is being

parsed a qualifier serves as a way of identifying a subcategory of commands such as

“draw box” or “kill frigate.”

o Qualifier with Argument: Commands with qualifiers are the last type of command that

the console supports. The one liner is the fastest command to run (in relation to the

command console, not on user implementation), whereas the qualifier with arguments

is the most expensive command type. The parser identifies the command, finds the

associated qualifier, then passes the argument list to the command where the user must

handle the output. The qualifier is meant for specialty functions where a default

qualifier is not enough. Useful for testing, parameters can be used to modify the

initializer of the command.

Built-In Command List:

Engine Commands (AKA Built-in Commands) Description

NoClip / God Cam Startup Provide a way to access the God Cam without a

specific key combo. The idea here is it pulls the

tools we’re using out of the game and into the

console. Gameplay – tools are separated.

Restart / Reload Scene The ability to reload the current scene or to
restart the game without fully closing the game
out and starting from fresh. While restarting may
be trivial for our demos, I can see the ability to
reload a scene as useful if the game takes a while
to get to the scene and the gameplay programmer
isn’t looking to reorder the scenes.

This should be fairly straightforward to

implement. The current scene is deleted in the

scene manager and a new instance is created. If

we wanted to restart the entire game (two

separate commands) we could delete the current

scene and load the default/starter scene.

Reset Camera Reset the Scene Manager’s default camera back to

its starting position. I can see this having an

unintentional effect on the gameplay as the

gameplay programmer may want to simply reset

the orientation of the camera which the console

wouldn’t be able to do (too game centric). This

merely resets the default camera to its original

orientation and sets it back to the current camera.

Time Get the current running time of the engine from

the Time Manager. This will display the time that

the game has been running since startup. Simple

getter and printing the result to console.

Ping Get a pong response with the time it takes to

execute the ping command. Printing the time it

takes to execute the command may be trickier

than it sounds as this would require either a timer

or a call first to get the time, store it, run the pong

command, get the time again, and to print out

the difference. At the very least, a hello world for

the console.

FOV [x] Change the current camera’s FOV to the specified

integer (delete the existing camera and recreate it

with the FOV change).

Near [x] / Far [x] Change the near or far clipping plane to x (delete

and recreate the new camera).

Models, Images, Shaders, SpriteFonts, Textures Print out a list of all stored models, images, etc.

stored by name. The usefulness of this is limited,

however a gameplay programmer may want to

see if an asset they were trying to use was actually

loaded into memory or not. By querying the

stored assets they could confirm whether or not it

is stored in the engine.

Alarms Using the alarmable manager, display a list of

alarms that are set to trigger on the timeline.

VisualizeAll Place a Bounding volume (as defined by the

collidable) around each one of the collidable

objects.

Proposed Timeline

 Previously:

 Now:

Week by Week Timeline

Task Estimated Week Explanation of Task

Allow User to pass commands to

the console

Week 4 Build up the systems within the console to

allow the user to pass commands into the

console. This is merely the receiving and

management of user commands in the

console after they are passed in. This

system has been completed via

prototyping.

Build a new screen logging tool Week 5 Create a tool that the user can easily use to

output data to the console. This tool will

need to handle print messages in Default,

Warning, and Error colors.

Build Built-in Commands Week 6-8 Built-in Commands and User commands

are both taking place during these two

weeks. Many commands I initially think are

Built-in commands turn out to be user

commands only and vise-versa. I want

these two weeks to be development of

either a user or built-in command as they

can flip flop. Either way, I intend to make

several commands of each by the end of

week 8.

Build User Commands Week 6-8 See above

Polish UI Week 9-10 UI polish includes making the panel of the

console (background) a slight gray color

along with adjusting the font and

coloration to fit the new scheme. Ideally,

I’d like the output to look similar to the

Gold Source console.

